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Investigating one-dimensional diffusion by quasielastic neutron scattering:
A theoretical approach
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Scattering functions and full widths at half maximum for quasielastic neutron scat{€¥ENS are calcu-
lated for diffusion in systems of one-dimensional channels. The self-correlation function for diffusion in
isotropically oriented channels is given and it is found that this function diverges at the origin. The calculations
are carried out for both normal and single-file diffusion and the influence of the ballistic phase is investigated.
It is found that the ballistic phase influences the scattering functions very strongly for large diffusion coeffi-
cients. QENS data from the literature are analyzed with respect to this influence. The influence of three
different resolution functiongtriangular, Gaussian, and Lorentzjaa considered[S1063-651X99)11602-7

PACS numbd(s): 05.60—k, 66.30.Dn

[. INTRODUCTION tained. Whereas typical observation times in PFG NMR are a
few milliseconds, the accessible time range for QENS is
Diffusion in restricted geometries may substantially differ smaller than 10 ns. Therefore, it is interesting to compare
from diffusion in the bulk phase. Due to the influence of results from both methods. Up to now only a few experimen-
potential walls(i.e., surfaces the space accessible by the tal results on single-file diffusion obtained by PFG NMR
diffusing particles is restricted and the number of availabld 7.8] and QENS9] are published.
diffusion paths is reduced. Very often, the diffusional behav-
ior is controlled by these surfaces, rather than by the charac- Il. ONE-DIMENSIONAL DIFFUSION
teristics of the diffusing particles. Such a behavior is found, AND SINGLE-FILE DIFFUSION

e.g., in zeolites, where the particles move in systems of chan- | the case of one-dimensional normal diffusion the par-
nels and pores with diameters in the range of 58041 A ices can pass each other. There is no substantial change in

unconnected channels, where any particle permanently regifills the Einstein relation

mains in the same channel. This special kind of diffusion is
denoted as unidimensional or one-dimensional diffusion. If (22)=2Dt, )

the particles in a given channel can pass each other, no de- _ L e o
viation from the time behavior of normal diffusion will occur Wherezis the direction of diffusior{channel directionand

and the mean square displacement is proportional to the 019 denotes the diffusion coefficient. The diffusion coefficient
servation time. However. if the radius of the channel iSwiII decrease if the particle density in the channel increases.

smaller than the particle diameter, no mutual passages of t}? simple jump mode(5,10 yields the concentration depen-

. : . e enceDx1— 6 with # denoting the relative occupancy. In
particles are possible and a completely different diffusional : S e ;
behavior is expected. In this case, the order of the particles i he case of single-file diffusion, the mean-square displace-

' ’ ! . ment may be represented by a similar relation,
the channel cannot change. Systems that obey this condition
are called single-file systems. Obviously, in such systems, (22)=2F\k, 2)
there is a high degree of mutual correlation between the
shifts of different particles leading to an essential change inwhere the quantity as the counterpart of the self-diffusion
the diffusional behavior. It was found by analytical meanscoefficient is denoted as single-file mobility or simply mo-
[1-3], simulations[4—6], and experimen{7-9] that the bility [5]. This single-file mobility is known to depend still
mean square displacement in such systems increases in pfaoere strongly on the particle densityor the relative occu-
portion with the square root of observation time that is inpancyg than the self-diffusivity, following the relatiofl—5]
contrast to the behavior of normal diffusion also in one-

dimensional channels. 1-¢6

Molecular transport in zeolites has been studied by a va- Fo T )
riety of techniques including adsorption/desorption, perme-
ation, tracer, and spectroscopic methpti3—12,14,1% It is Theoretical considerations show that the single-file mobil-

only by the latter techniques, viz., pulsed-field gradient NMRity may be related to the behavior of a sole particle in the
(PFG NMR [10,13 and quasielastic neutron scattering channe[3,6]. It is obvious that a sole particle follows Ed)
(QENS [14,19, however, that unambiguous information rather than the rules of single-file diffusipBg. (2)] because
about the time dependence of molecular displacements, arttlere are no neighboring particles and, therefore, there is no
hence of the existence of single-file diffusion, may be ob-confinement resulting in a deviation from normal diffusion.
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One finds[3] that the self-diffusivityD of a sole molecule IV. THE SCATTERING FUNCTION FOR DIFFUSION
in a channel and the single-file mobility in this channel at a IN' A SINGLE CHANNEL
relative occupancy are related to each other by the expres-

As a first step, we calculate the scattering function for a
single channel. For simplicity, it is assumed to be parallel to
that of the scattering vectd. In this case, using Eq$5)
= F2p2 and (6), the scattering function is found to be

P T T T A= 07 @ -
2

sion

Sl(Q,w)=%j0+mdtcos(wt)ex;<— ) @)

wherel =a(1— 6)/ 6 denotes the mean-free-path of a particle

anda is the particle diameter. Inserting the mean-square displacement for normal diffusion

The diffusion coefficient of a single partic, as calcu-  [Eq. (1)], the scattering function for normal diffusion is
lated from experimental results for the mobilfyia Eq.(4)

is known to be very largée.g., 0.5< 10 *m?s™! for tet- 1 DQ2
rafluoromethane in AIPQ5 [7] or 0.7x10 ®m?s™? for Sl(Q,w)=;m-
methane in ZSM-449]) compared with diffusion coeffi-

cients found in three-dlmeq5|onal zeohte_s. . The scattering function for one-dimensional normal diffusion
The key function c;ontrollmg the expgrlmental reSPONSE 1My 45 a Lorentzian shape as known from three-dimensional dif-
both PFG NMR and incoherent QENS is the probability den'fusion [15]. Alternately, inserting the mean-square displace-

sity that a particle, which starts at the origin=0), is at tf inale-file diffusiodEaq. (2)1. th ttering func-
positionz after an evolution timé. In the case of PFG NMR, '[Po?]nis or single-file diffusior{Eq. (2)], the scattering func
T , 1 c
co 2x 5 (X)

®

this function is generally termed the propagator and is de-

noted byP(z,t). In QENS, the term self-correlation function X
has been introduced, with the notati@iiz,t), which we will S1(Q,w)=—
use exclusively in the following discussion. In both normal @

one-dimensional diffusion and single-file diffusion, the self- - 1
correlation function is of Gaussian sha@3]: +sin Exz (E_S(X) , 9
1 22 where
G(z,t)= ex (— ) (5)
222 P T 22 2
FQ
X= (10
27w

IIl. MEASURING SELF-DIFFUSION BY QUASIELASTIC
NEUTRON SCATTERING and C(x)=[pdtcos@t?2) and S(x)=[3dtsin(nt%2) de-
o note the Fresnel integrals, following the notation of Ref.
For molecules containing hydrogen, the neutron cross se¢1g). For a numerical evaluation of the scattering function

tion for incoherent scattering is much larger than for coherto; single-file diffusion, it is useful to introduce the auxiliary
ent scattering15]. Therefore, it is possible to measure self- fynction[18]:

T L)1 s

EX E_ (X) .

diffusion, i.e., the shifts of individual particles, rather than
the evolution of the particle density, which is obtained by - 1
coherent scattering. g(x)=|cog =x?|| = —C(x) | +sin
. . . . 2 2
Throughout this paper we use the quasiclassical approxi-

mation for the incoherent scattering functigib] (1D
For g(x), there exists a rational approximation,
1
S(Q,w)= —f dtf dr exp[i(Qr — wt)]G(r,t). (6) 1
2 =
i 9= 377 1axr 34922 66708 o) (12

#.Q describes the momentum transfer, i.e., the difference bewith

tween outgoing momenturk,,; and incoming momentum

#ikin, Whereashw is the energy transfer in the interaction le(x)|<2x103. (13
between neutron beam and diffusing particles.

To obtain the total scattering function the translationalAlthough £(x) seems to be small enough to be neglected,
part as given in Eq(6) has to be convoluted with the rota- there are some problems when calculating the scattering
tional and vibrational parts. However, since the rotationaffunction aroundw=0. Then, the variable becomes large
and vibrational parts involve much larger energy transfersand for large arguments the auxiliary function becomes
they are not influenced by the different time behaviors insmall. Therefore, the relative error becomes large and the
one-dimensional diffusion; therefore, we neglect these partapproximation according to E¢12) should be used only as
here and concentrate on the translational part. a first estimate.
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V. THE SELF-CORRELATION FUNCTION =" _drr2G,(r,t) for the system of isotropically oriented
FOR ONE-DIMENSIONAL DIFFUSION channels, it is found thafr?)=(z?). This is in contrast to
IN ISOTROPICALLY ORIENTED CHANNELS three-dimensional normal diffusion, where the mean-square

In most experimental circumstances it is not possible tdliSplacement for three dimensions is three times the mean-
prepare a sample of crystals in such a way that all oneSquare d|32place21ent of a selected single @m;ens(mﬁ)(
dimensional channels are oriented in the same direction. Thg (X% +(y)+(z%)). From now on, we will writeo* for the
common case is that one has to deal with a sample of isotrdl€an-square displaceme(nt’). . .
pically oriented channels. Therefore, to compare experimen- It is remarkable that the self-correlation functia(r, t)
tal data with the model, one has to calculate the scatterin{ N0 longer a Gaussian. Now, in the denominator there oc-
function Sy(Q,w) for diffusion in isotropically oriented Curs a factor?, which leads to a discontinuity at=0. The
channels. This can be obtained either by performing a powProbability of finding a particle around=0 is much larger
der average with the scattering function for one-dimensionalhan in the case of a Gaussian distribution, whereas the prob-
diffusion in a single channel or by calculating the scattering@bility of finding a particle at large is much smaller. There-
function directly from the three-dimensional self-correlationfore, in this case, the particles are much more concentrated
function for isotropically oriented channels. Both methodsaround the origin than in the case of conventional three-
are equiva]ent and the 0n|y difference is a Change in théﬁmenSional difoSion, which is described byaGaUSSian self-
sequence of the integrations. correlation function. This concentration is the consequence

Although the scattering function could easily be found byOf the higher probability to find a specific channel on a cer-
performing the powder averages of E(®).and(9), we here tain area c_>f a surface_wnh small radiuscompared with
prefer to calculate the three-dimensional self-correlatiorSurfaces with large radius.
functions, because the knowledge of these functions gives

some additional insights into the systems under consider- VI. THE SCATTERING FUNCTION

ation. Furthermore, leaving the integration over the observa- FOR ONE-DIMENSIONAL DIFFUSION

tion time as the last step will also allow the possibility to IN ISOTROPICALLY ORIENTED CHANNELS

examine other time dependencies than those given by Egs. ) . . ) .
(1) and (2). Once the self-correlation function for isotropically ori-

Let G4(z,t) be the self-correlation function of a diffusing €nted channels is known, the scattering function is found
particle in a single one-dimensional channel. This self-from Eq.(6) as
correlation function describes the probability density that a

particle starting at the origin is at positianafter a time :if J' . .
interval t. The three-dimensional self-correlation function S3(Q.@) 2 dt ] drexp(—iwt)expiQr)Gs(r.t)
G;(r,t) is then the combined probability density that a chan- (16)

nel goes through the poimtand that the particle has a dis-

placementr =|r|. The latter probability is simply given by 1 (e o 2m LI

the one-dimensional self-correlation functio,(z=r :;fo dtfo drfo d@fo dore sin(6)cod wt)
=|r|,t). The probability density to find a given channel on

the surface of a sphere with radiusgs (27r2) 1. The pro- 1

portionality with r 2 reflects the fact that the number of X cog Qr cog 9)]m61(r,t), (17)
channels is constant and, therefore, that the probability to

find a given channel in a certain area is the inverse of th‘\?vhere Eq.(14) was used to substitu@(r,t) and the one-
total surface_of the sphere. An additional factor_1/2 arise%imensional self-correlation functioB,(r,t) was assumed
because a given channel found on the surface stalso 4 e an even function in bothandt. Performing the inte-

found at —r. Combining the two probabilities, the three- graiion overp and substituting cosf=s, the scattering func-
dimensional self-correlation function for isotropically dis- tion becomes

tributed channels is found to be

2 (= % 1
S3(Q,w)= ;fo dtf0 drfO dscog wt)cogQrs)Gy(r,t).

1
Gy(rt) = 5—3Ga(r.1). (14)
(18)

7Tr2

In all relevant cases to be considered here the SelfAssumin a Gaussian shape for the self-correlation function
correlation function in a single channel is a Gausdiang. 9 P

(5)]. With Eq. (14), the three-dimensional self-correlation .Gl(r’t)’ the integrals over ands can be calculated, result-

function of the system of channels hence results to be ing in the scattering function

Qo

1 r2 RS
G3(r,t)=(277)3/2<22>1/2r2exr<——72<z>). (15 Ss(Q.w)—\/ﬁL dtQUcos(wt)erf( \/E) (19

In Eg. (15 the mean-square displaceme{ra?} is that of a  where erf é<)=(2/\/F)fédte‘t2 denotes the error function.
single channel, i.e., that of the self-correlation functi&h For normal diffusion, where the mean-square displacement
Determining the mean-square displacementr?)  behaves ag®=(r?)=2Dt, the solution is known to bgL6]
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1+y2—y\/§ Introducing the auxiliary function

1+y2+yy2

_ [
S5(Que) = =t . A
H(t,w,ﬁ)ZJl doR(w— w,d)coq wt), (23

+2 arctan(1+ \2y) — 2 arctan(1— \/Ey)}
which is proportional to the cosine Fourier transform of the
(20 energy resolution function, the scattering function becomes

. 5) ! fcdth 5) ! f( 20)
w [li— w —_—ern| —|.
5 S;r(Q, w, 2o (t, o, 00 ® i
y=—rw : (21 (24)

In most cases the energy distribution function or resolution is

a function with a narrow peak ab=w. In this paper we

gardless of the momentum transi@r This behavior atw : .
— 0 (and thus for large time scaleis different from normal restrict ourselves to the three most prominent representa-
tions, viz., a triangular resolution:

three-dimensional diffusion, where the scattering function di-

verges only if momentum and energy transfer vanish simul-

taneously. The different behavior of these two cases is an iz(&)_w+ 5, w-d<o<w

immediate consequence of the corresponding self-correlation 6

functions. In the case of normal three-dimensional diffusion, R(o—w,8)=

the probability that a particle has moved over a finite nonva- '

nishing distance in a long time interval is large and thus an

energy transfer occurs. Otherwise, in the case of diffusion in 0, else,

isotropically oriented channels, the probability that a particle (25

is nearr =0 is large also for long time intervals. But, if no

particle shift occurs, there is no energy transfer and due téaussian resolution:

the discontinuity in the self-correlation functidds(r,t) at

r=0 [see Eq(15)], a discontinuity in the scattering function R 1 (0— )2

at w=0 ariseq17]. Rlo—w,8)= \/2—59X TR
By settingw=0 in Eq. (19), it may be shown that this .

behavior not only results for normal one-dimensional diffu-

sion, but for all processes where for>0, the mean-square

displacement behaves a$=(r?)ot® with «<2. Therefore,

the discontinuity arises for any realistic time behavior of the Ro— o 8)= E o

diffusional process in isotropically oriented channels, espe- (0= w,8)= T P+ (00— w)?

cially for normal (#=1) and single-file &= 0.5) diffusion.

For =0 the scattering function in Eq20) diverges, re-

1 A -
?(—w-f-w-i- o), owsosw+sd

) , (26)

and Lorentzian resolution:

(27)

The triangular resolution applies to the neutron spectrometer,
VIl. THE INFLUENCE OF THE EXPERIMENTAL which was used in the experiment described in Réf.
RESOLUTION ON THE SCATTERING FUNCTION (IN5), where a narrow energy distribution is selected from a
white beam using multichoppers.

The discontinuity in Eq(19) does not directly appear in The corresponding auxiliary functions are

the experimental data because the incoming neutron beam is
never strictly monochromatic with a fixed incoming energy 4
wi, . In reality, there is a more or less sharp energy distribu- H(t,0,8)= ﬂcos(wt)sin2<
tion aroundw;,, , which is described by the energy resolution o
function R(@;, ,win,8). This function gives the probability
that a neutron of the incoming beam has the enéiréyn,
when the mean energy fsw;,. The parameteb describes 252
the width of the resolution function. H(t,w,8)= cog wt)ex;{ - _> (29)
The scattering function given by E¢L9) has to be con- 2

voluted, therefore, with the energy resolution functRfw

ot
> (29)

for triangular resolution,

- ,9), for Gaussian resolution, and
1 (o (o ) H(t,w, )= cog wt)expts) (30)
S3Rr(Qw,0)=— da)f dtR(w— w, d)
N2 - 0 for Lorentzian resolution.
1 0 Inserting the auxiliary function from Eg28) into Eg.
X — cog a)t)erf( _‘7) ) (220 (24 we finally have for the scattering function with triangu-
Qo J2 lar resolution, e.g.,
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t 'nz(&) f(QU) (31
X il —|erfl —|.
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Aw 1
S3,R( Q- 5) =5S3r(Q.0), (36)

whereAw denotes the FWHM. Now we considdrw as a
function of u. In order to have a generalized width, which is
independent of, we introduce the new variable

This equation holds true for any time behavior of the mean-

square displacement?.
In the following, we will use the quite general notation,

o?=2dt?* (32

including the cases of normal diffusigwith w=1/2 andd
=D) and single-file diffusionwith x=1/4 andd=F).

Although no analytical solution of the integral in EQ4)
with the time behavior of Eq.32) is known, an estimate for
large values of)+/d can be given. In this case, the argument
of the error function erfQ/dt*) is large and the error func-
tion approaches 1 already for short timesTherefore, the
error function can be omitted for Iarg@\/a in Eq. (31). For
the resulting integrals analytical solutions are known:

S3,R(Q4’°O!w!5)

1F(

QVde? F(

1+u
2
2+ u

2

1

8

1
2"

X[20M = (Jo+ o) TE= (o= 8]t TH]
(33

for triangular resolution,

52
2

)

1
e

1-u
2

—(1-wp)/2
S3,R(Q_)oc!w15): )

w2

1-p 1
2 "2 28

(34

XTI

for Gaussian resolution, and
I(1-p)(w?+ 8% 2wz

d

X co{ (1- M)arctar{ >

1
Ss,R(QH”%wﬁ):m

(39

for Lorentzian resolution. The functiogF,(a;b;x) denotes
the confluent hypergeometric functiph8] [alternative nota-
tions for this function areb(a;b;x) or M(a,b,x)].

Once the scattering function is known, the full width at
half maximum(FWHM) can be found from the relation

_Ao(p)

AQ=—=,

(37

whereA wqy denotes the width gt =0.

Generally, it can be shown by analytical means that the
scattering function(Eq. 29 is identical to the resolution
function R(w, 8) whenQ+/d=0. This condition is fulfilled if
either u=0 or Q=0 and, therefore, in both cases we have
S3r(Q,w,8)=R(w,0,6). This can be rationalized by the fact
that atu=0, the particles do not move and, therefore, there
is only pure elastic scattering. Thus, the outgoing energy
distribution is the same as the incoming distribution. The
same is true for the energy distribution@t=0. In this case
there is neither a momentum nor an energy transfer and again
incoming and outgoing energy distributions are the same.
Then, in both cases(=0 andQ=0), the widthA w, of the
scattering function is the same as the width of the resolution
function. In the cases under consideration, this quantity, ex-
pressed as a function & is

Awg=46 (38
for triangular resolution,
Awy=2+21n(2)6 (39)
for Gaussian resolution, and
Awy=28 (40)

for Lorentzian resolution.

4

triangle
~=-- Gaull
Lorentz

normal diffusion

single-file
diffusion

0.50 0.76

FIG. 1. The widthAQ) atQ—<° as a function of the exponept
for triangular, Gaussian, and Lorentzian resolution.



PRE 59 INVESTIGATING ONE-DIMENSIONAL DIFFUSION BY . .. 6667

TABLE I. The relative full width at half maximum\() at Q 0.025 - T y T y T
—oo for single-file and normal diffusion in isotropically oriented
channels.
Single-file Normal ( T T
u=0.25 u=0.5 /
; s |
Triangular 1.2687 1.7108 £ )
Gaussian 1.2145 1.6968 g i
Lorentzian 1.4124 2.5425 0.020 |+ 1
! ——F=10x10"m%"
' —---F=1.0x 10" ms™
'.' ------- F=1.0x10" m%s™
The widthAQ) at Q—« as a function of the exponept
.0

is given in Fig. 1. While foru<0.6 the width grows slowly
from & to 26, for ©>0.6 there is a very steep ascent leading
toy—o at u=1. It should be noted here that the FWHM for
Q—o is finite in all cases withu<1. This is in striking FIG. 3. The widthAw for single-file diffusion with triangular
contrast to three-dimensional normal diffusion where theesoution as a function of the momentum transgefor different
width for largeQ is proportional toQ and thus goes to in- mgpilities.
finity.
For the cases of normalu(=0.5) and single-file 4  FWHM, because for diffusivities larger than this limit, the
=0.25) diffusion, the width& Q) for the different resolution FWHM has reached its maximum value already Qt
functions are given in Table I. Whereas the values for Gauss=0.2 A~ (see Fig. 2 In the single-file case the limit is at a
ian and triangular resolution are very similar, the width for mobility of F=1x10"? m?s %2 (see Fig. 3 The behav-
Lorentzian resolution is much larger. ior of the FWHM in the cases of Gaussian and Lorentzian
For u—1, the integral in Eq(31) is dominated by the resolution is similar and the limiting diffusivities or mobili-
behavior of the integrand @t-0 and, thus, the approxima- ties are of the same order as in the case of triangular resolu-
tion erf—1 is not good in this region. Therefore, the FWHM tion.
as predicted from Eqg33), (34), and(35) in Fig. 1 will be Whereas the determination of diffusion coefficients or
reached only at very larg®+/d. For diffusion processes, mobilities using the FWHM is not always possible, these
where the exponentt<0.5, the approximation should be quantities can be found using the scattering functions. In
good enough and the FWHM reaches its maximum valud-igs. 4 and 5 the scattering functions with triangular resolu-
already at intermediate values Of\/d. tion for three-dimensional normal diffusion and for normal
The behavior of the FWHM for triangular resolution as aand single-file diffusion in isotropically oriented channels at
function of the momentum transf€ for normal and single- a momentum transfer d®=0.35 A~! are compared. The
file diffusion in isotropically oriented channels as resultingrelevant parametersgdiffusivities and mobilities, respec-
from numerical evaluation of E431) is given in Figs. 2 and tively) are chosen in such a way that the other amplitudes are
3, respectively. For the width of the resolution function, a best fits to the scattering amplitude of normal diffusion in
value of 0.018 meV is used. This is the same value as used ghannels. For very small parametéfsg. 4) the scattering
a recent experiment on IN®]. In the experimentally acces- functions are almost identical and it is impossible to distin-
sible range ofQ=0.1-2.0 A"? diffusivities D larger than guish between the three different types of diffusional behav-
1x10°% m?s ! cannot be distinguished by comparing theior. The shape is essentially governed by the instrumental

0.5 1.0 15 2.0
QA1

[=]

"2

50 - ——D=30x10"m’s"(3 D)

0 2 1

/ ----D=10x10" m"s" (channels, normal)

7 18 2172,

40 F=1.0x10" m’s™"(channels, single-file)

0.030

30

0.025

S,x(Q0,8)

Ao [meV]

10

/ e ——D=10x10" m’s’
)
0.020 |- / e ----D=1.0x10"m’s" 0

’ .-
- 02

! LT e D=1.0x10" m’s

AAAAAAA R i N L R t . -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10

0.0 0.5 1.0 1.5 2.0 o [meV]
QA"

FIG. 4. The scattering functionS;r(Q,w,5) for three-
FIG. 2. The widthA w for normal diffusion with triangular reso- dimensional normal diffusion and for normal and single-file diffu-

lution as a function of the momentum transferfor different dif- sion in isotropically oriented channels @=0.35 A™! (triangular
fusivities. resolution. Small diffusion coefficients.
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4.5 v T T T T v T T T w [meV]
4.0 |- ‘ 0.1 0.01
. l/ ' ----F=3.0x10" m’s"(channels, single-ﬁle)t LA L Ty
35 Y ——D=10x10"° m’s"(channels, normat)
————— D=43x10° m’s'(3 D)
30t - 10°
= i
g. J D=10"m’s’ .g
i 1 10° -
[72] .\‘ L T 'E 3 100
y-\ T . 7] o occupied by
R \\ central peak
\\;"’-—»;,,i\m,_ 107
0,0 - ‘7w7<_>1-—: 1
R 1 1 ) ! 1 !
-0,04 -0.02 0,00 0,02 0.04 0.06 0.08 0.10
o [meV] 10 " " i
10" 10" 10 107

FIG. 5. The scattering functionS;g(Q,w,5) for three-

dimensional normal diffusion and for normal and single-file diffu-

sion in isotropically oriented channels @=0.35 A" (triangular
resolution. Large diffusion coefficients.

resolution. Only the scattering function for single-file diffu-
sion differs slightly from the other ones aroung=0.02

meV. Experimentally, this means that one would have toside). The mean shiftr for normal diffusion with initial ballistic

tis}

FIG. 7. The space and time rangésft and lower axistogether
with the corresponding ranges of momentum and energy transfer

(right and upper axjsrelevant for QENS. The vertical straight line

divides the plane into the range occupied by the central peak of the
scattering function for the case without ballistic ph&sght-hand
side and into the range not occupied by the central péafit-hand

resort to another spectrometer having a higher resolution. F(Hhase is given for two diffusivities{=10"° and 107 m?/s).
larger parametergFig. 5 the scattering functions are well
separated and both the determination of the principal diffu-
sional behavior and the diffusivity or mobility can easily be

done.

As an example, we compare the theoretical scattering

Ruwp=

functions with experimental data, found for methane in the
zeolite ZSM-48(for details see Ref9]). The data are given
for a momentum transfer @=0.35 A1, where the influ-

ence of rotation is small and can be neglected. In Fig. 6 th
data together with the best fits to the experimental data fo
normal and single-file diffusion in isotropically oriented
channels are given. The fits were carried out minimizing th

function

2.5

1/2

> wi[y;(obg —y;(calg]?

. (4D

> wiy?(obs

g\/hereyi(obs) andy;(calc) denote the experimental and the-
retical values of the scattering functions, respectively, and
he weight isw; = 1/y;(obs). Whereas the scattering function
for normal diffusion withD=2.5x10"° m?s™ ! reproduces
She data very well R,,=12.4), the function for single-file

diffusion does not fit to the dateR(,,=18.9). It is not pos-
sible to reproduce the experimental data with the single-file
diffusion function both in the central peak and in the wings.

2,0

$,(Q.0.9)

0.5

11 - - - - single-file diffusion, F=1.0x 107 m’s™]
\

T ! 0.08

X exp.dala

normal diffusion, D=2.5 x 10 m’s™

2 2 |

0.06

FIG. 6. Comparison of experimental data from the diffusion of

T
0.0

o [meV]
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——D=10x10 *m’s"
—————— D=10x10" m’s"
~---D=10x10° m’s" N
»»»»»»» D=10x10" m’s’
------- D=1.0x10" m’s’

QA"

FIG. 8. The widthA w for normal diffusion with triangular reso-

methane in ZSM-48 with the scattering functions for normal andlution as a function of the momentum transferfor different dif-

single-file diffusion in isotropically oriented channels &

=0.35 AL,

sumed.

fusivities. A ballistic phase with a velocity af=280 m/s is as-
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tis] FIG. 11. The scattering functiorS;g(Q,w,8) for three-

FIG. 9. The space and time rangéaft and lower axistogether djmen§ional normal diffus.io.n and for. ngrmal gnd single-file diffu-
with the corresponding ranges of momentum and energy transfer O with and W|th0lit1balll_st|c phase in |sot_rop|ca_lly o_rlt_anted chan-
(right and upper axjsrelevant for QENS. The vertical straight line nels__at Q=035 A (trlangular_resolutloh D|ffus_|V|_ty and
divides the plane into the range occupied by the central peak of thg‘()b'l't_y chosen such that ranges influenced by ballistic phase and
scattering function for the case without ballistic ph&sght-hand occupied by central peak do not overlap.

Side. The mean shifor sngle-fle difsion wit il ballsdc Ve thus obtain

phase is given for two mobilitiesH=10"** and 10 *? m?/s'?). 1U2-2u)

2d
t.= F

_ _ . _ The velocityv during the ballistic phase coincides with
Quasielastic neutron scattering measures the behavior oftge thermal velocity of the particles

system on a time scale of 1& to 10 8 s. These times are

very short compared with the range accessible by PFG NMR KT\ 2
and it is not obvious whether the long-time behavior is al- v= ,
ready established in the QENS measurements. At short times

the behavior of the particles is ballistic, i.¢z?)=v?t?, and  wherem is the mass of a particle anflis the system tem-
there exists a transition timg where the system behavior perature. The time dependence of the mean-square displace-

switches from the ballistic phase to normal or single-file dif-ment over the complete time range can be approximated by
fusion. We define the transition timig as the crossover time [19]

of the two asymptotic behaviors, i.e., the time when the

43
VIIl. THE INFLUENCE OF THE BALLISTIC PHASE @3

ON THE SCATTERING FUNCTION

= 44

mean square displacements of the two processes are the ) v2t?
same, o= (45)
2_ 242 2 1+ ﬁtz e
o =vt=2dt". (42
M T T T T T T M T
0.08 ' / ) ' " T j 14 - P - - - -F=3.0x 10" m’s*“(channels, single-lile)
a r - F =30k 10" m's(channels, single-file, ballistic)
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Qi FIG. 12. The scattering functiorS;r(Q,w,8) for three-

dimensional normal diffusion and for normal and single-file diffu-
FIG. 10. The widthA w for single-file diffusion with triangular  sion with and without ballistic phase in isotropically oriented chan-
resolution as a function of the momentum transgefor different nels at Q=0.35 A"! (triangular resolution Diffusivity and
mobilities. A ballistic phase with a velocity af=280 m/s is as- mobility chosen such that ranges influenced by ballistic phase and
sumed. occupied by central peak overlap.
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Inserting this approximation into E¢24), the scattering fore, a stronger increase of the FWHM should be expected
function and width for the case with ballistic behavior can becompared with the case without ballistic phase.

found. In the numerical calculations, a velocity= 280 m/s In PFG-NMR measurements, where the observed time
was used. This value corresponds to methane molecules asgale is 1-100 ms and, therefore, the ballistic phase cannot
temperature off =150 K. be seen, mobilities of an order &f=10 %' m?/s"? were

The consequences of the existence of a ballistic phas®und [7]. The mobility factor obtained from QENS for
become obvious considering the transition times and the comethane, F=2x10"** m*/s"’? corresponds to the limit
responding particles shifts. Figure 7 shows the space an@ihere this effect has to be considered. Thus, measuring such
time ranges(left and lower axestogether with the corre- syst_ems by qua_5|elast|c neutron scat.tenng, the.analysus of the
sponding ranges of momentum and energy trar(sigt and baII_|St|c phase is necessary for the interpretation of the ex-
upper axi$, which are relevant for quasielastic neutron Scat_penme_ntal results. . . 1
tering. The vertical straight line divides the plane into the In Fig. 11 the scattering functions f@=0.35 A" with
range occupied by the central peak of the scattering functio

for the case without ballistic phageight-hand sidand into tion of Fig. 7, the change of the scattering function is very

the range '.th occupied by the central peéhi{t—hgnd sidg: small for normal diffusion with a diffusion coefficient &
The half width at the base of the gentral peak is assumed to 10°8 m?s L. In the case of single-file diffusion with a
be_25 and the small c_iepe_ndenc_:e Qn_s_neglegte_d. The mean mobility of F=4.1x 103 m?s~ 2, the scattering function
shift o for normal diffusion with initial ballistic phase to- \yith pallistic phase is larger than without. The main effect is
gether with the corresponding crossover times given for i the wings outside of the central peak.

two diffusivities (D=10"°and 10" m?/s). For the smaller The scattering functions for a diffusivity or mobility,
diffusivity the crossover time is far away from the range where a large change in the behavior is expected, are given
occupied by the central peak and, therefore, the central peak Fig. 12. Both for single-file and normal diffusion, the scat-
should not be modified by the influence of the ballistic phasetering functions are much larger than in the case without
With increasing diffusivity the range influenced by the bal- ballistic phase. The increase of the scattering functions out-
listic phase grows towards the upper right corner. At  side the central peak is very strong leading to large widths as
~10 % m?/s the range influenced by the ballistic phase be-already seen in Figs. 8 and 10.

gins to overlap with the region occupied by the central peak Reanalyzing the experimental data shown in Fig. 6 we
of the scattering function. A change in the pattern of thehave found that the diffusivity is small enough to justify the
scattering function and of the width should be expected ireXclusion of a ballistic phase and hence of the possibility of
the case of such an overlap, i.e., in the present case for dift Misinterpretation of the data by neglecting this effect. This
fusivities larger tharD ~10% m?/s. result is in agreement with the above statement that the in-

In Fig. 8, the FWHM for normal diffusion and triangular fluence of the ballistic phase becomes negligible for diffu-
resolution with an initial ballistic phase in isotropically ori- Sivities smaller than I mPs
ented channels is given. As expected from the interpretation
of Fig. 7, for diffusivitiesD <10’ m?/s the behavior of the
FWHM is very similar to the case without an initial ballistic
phase (see Fig. 2 whereas for a diffusivity ofD The phenomenon of single-file diffusion may be investi-
=10"% m?/s the behavior changes. In fact, the change in thgyated by means of quasielastic neutron scattering. For diffu-
behavior is dramatic and the FWHM increases rapidly in-sivities and mobilities large enough to lead to a significant
stead of approaching a constant value for la@eln all ~ broadening, diffusion in isotropically oriented one-
experimental cases studied so fér,is of the order ofD dimensional channels can be well distinguished from three-
=10"° m?s, and, therefore, the ballistic phase can be nedimensional normal diffusion. Furthermore, normal and
glected. single-file diffusion in such channels can also be distin-

In the case of single-file diffusion the situation is similar. guished and the determination of the diffusivity or mobility
In Fig. 9 the range influenced by the ballistic phase and thés possible. Due to the discontinuity of the self-correlation
range occupied by the central peak of the scattering functiofunction Gs(r,t) at r=0, the scattering functiors;(Q, w)
are given for single-file diffusion. For single-file diffusion has a discontinuity atw=0 and the scattering function
the overlap begins at a mobility dF~2x10"'* m¥s"2  S;5(Q,w,8) convoluted with the resolution function is much
Again, when the two regions overlap, a significant change imarrower than in the case of three-dimensional normal diffu-

and without ballistic phase are compared for a medium dif-
Pusivity and mobility. As to be expected from the interpreta-

IX. SUMMARY

the behavior of the FWHM is to be expected. sion. Therefore, the resolution of the spectrometer used must
The FWHM for different mobilitied= is given in Fig. 10.  be adapted accordingly.
For mobilities smaller than 210 > m?s~ 2 the influence In contrast to the case of three-dimensional normal diffu-

of the ballistic phase is smafsee Fig. 3 and the FWHM  sion where the FWHM increases linearly with the momen-
approaches a constant value for lafgeOtherwise, for mo- tum transferQ, the FWHM for diffusion in one-dimensional
bilities larger than the above value, the widths are rapidlychannels approaches a constant value at |Qgehen the
increasing withQ. mean-square displacement is assumed to follow a power law
The strong increase of the FWHM can be understood byEq. 32 over the full time range. For large diffusivities or
interpreting Fig. 1. In the ballistic phase the exponent of themobilities the FWHM reaches its maximum value already at
time behavior[Eq. (32)] is =1 and for this value the small momentum transferQq<0.2 A™1). On the other
FWHM increases to infinity for larg® (see Fig. 1. There- hand, for large diffusivities or mobilities the ballistic phase
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describing the free motion of the particles at short times beballistic phase should be taken into consideration, especially
comes essential. The influence of the ballistic phase leads tba large diffusivity or mobility is expected.

a significant increase of both the maximum of the scattering

function and the FWHM. The behavior of the FWHM can ACKNOWLEDGMENT
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