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Investigating one-dimensional diffusion by quasielastic neutron scattering:
A theoretical approach
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Scattering functions and full widths at half maximum for quasielastic neutron scattering~QENS! are calcu-
lated for diffusion in systems of one-dimensional channels. The self-correlation function for diffusion in
isotropically oriented channels is given and it is found that this function diverges at the origin. The calculations
are carried out for both normal and single-file diffusion and the influence of the ballistic phase is investigated.
It is found that the ballistic phase influences the scattering functions very strongly for large diffusion coeffi-
cients. QENS data from the literature are analyzed with respect to this influence. The influence of three
different resolution functions~triangular, Gaussian, and Lorentzian! is considered.@S1063-651X~99!11602-7#

PACS number~s!: 05.60.2k, 66.30.Dn
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I. INTRODUCTION

Diffusion in restricted geometries may substantially diff
from diffusion in the bulk phase. Due to the influence
potential walls~i.e., surfaces!, the space accessible by th
diffusing particles is restricted and the number of availa
diffusion paths is reduced. Very often, the diffusional beh
ior is controlled by these surfaces, rather than by the cha
teristics of the diffusing particles. Such a behavior is fou
e.g., in zeolites, where the particles move in systems of ch
nels and pores with diameters in the range of 5 to 10 Å . A
special case of diffusion occurs in zeolites with parallel a
unconnected channels, where any particle permanently
mains in the same channel. This special kind of diffusion
denoted as unidimensional or one-dimensional diffusion
the particles in a given channel can pass each other, no
viation from the time behavior of normal diffusion will occu
and the mean square displacement is proportional to the
servation time. However, if the radius of the channel
smaller than the particle diameter, no mutual passages o
particles are possible and a completely different diffusio
behavior is expected. In this case, the order of the particle
the channel cannot change. Systems that obey this cond
are called single-file systems. Obviously, in such syste
there is a high degree of mutual correlation between
shifts of different particles leading to an essential change
the diffusional behavior. It was found by analytical mea
@1–3#, simulations @4–6#, and experiment@7–9# that the
mean square displacement in such systems increases in
portion with the square root of observation time that is
contrast to the behavior of normal diffusion also in on
dimensional channels.

Molecular transport in zeolites has been studied by a
riety of techniques including adsorption/desorption, perm
ation, tracer, and spectroscopic methods@10–12,14,15#. It is
only by the latter techniques, viz., pulsed-field gradient NM
~PFG NMR! @10,13# and quasielastic neutron scatterin
~QENS! @14,15#, however, that unambiguous informatio
about the time dependence of molecular displacements,
hence of the existence of single-file diffusion, may be o
PRE 591063-651X/99/59~6!/6662~10!/$15.00
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tained. Whereas typical observation times in PFG NMR ar
few milliseconds, the accessible time range for QENS
smaller than 10 ns. Therefore, it is interesting to comp
results from both methods. Up to now only a few experime
tal results on single-file diffusion obtained by PFG NM
@7,8# and QENS@9# are published.

II. ONE-DIMENSIONAL DIFFUSION
AND SINGLE-FILE DIFFUSION

In the case of one-dimensional normal diffusion the p
ticles can pass each other. There is no substantial chang
the diffusional behavior and the mean-square displacem
fulfills the Einstein relation

^z2&52Dt, ~1!

wherez is the direction of diffusion~channel direction! and
D denotes the diffusion coefficient. The diffusion coefficie
will decrease if the particle density in the channel increas
A simple jump model@5,10# yields the concentration depen
denceD}12u with u denoting the relative occupancy. I
the case of single-file diffusion, the mean-square displa
ment may be represented by a similar relation,

^z2&52FAt, ~2!

where the quantityF as the counterpart of the self-diffusio
coefficient is denoted as single-file mobility or simply m
bility @5#. This single-file mobility is known to depend sti
more strongly on the particle densityc or the relative occu-
pancyu than the self-diffusivity, following the relation@1–5#

F}
12u

u
. ~3!

Theoretical considerations show that the single-file mo
ity may be related to the behavior of a sole particle in t
channel@3,6#. It is obvious that a sole particle follows Eq.~1!
rather than the rules of single-file diffusion@Eq. ~2!# because
there are no neighboring particles and, therefore, there is
confinement resulting in a deviation from normal diffusio
6662 ©1999 The American Physical Society
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One finds@3# that the self-diffusivityDs of a sole molecule
in a channel and the single-file mobility in this channel a
relative occupancyu are related to each other by the expre
sion

Ds5p
F2

l 2 5p
F2u2

~12u!2a2 , ~4!

wherel 5a(12u)/u denotes the mean-free-path of a partic
anda is the particle diameter.

The diffusion coefficient of a single particleDs as calcu-
lated from experimental results for the mobilityF via Eq.~4!
is known to be very large~e.g., 0.531026 m2 s21 for tet-
rafluoromethane in AlPO425 @7# or 0.731026 m2 s21 for
methane in ZSM-48@9#! compared with diffusion coeffi-
cients found in three-dimensional zeolites.

The key function controlling the experimental response
both PFG NMR and incoherent QENS is the probability de
sity that a particle, which starts at the origin (z50), is at
positionz after an evolution timet. In the case of PFG NMR
this function is generally termed the propagator and is
noted byP(z,t). In QENS, the term self-correlation functio
has been introduced, with the notationG(z,t), which we will
use exclusively in the following discussion. In both norm
one-dimensional diffusion and single-file diffusion, the se
correlation function is of Gaussian shape@2,3#:

G~z,t !5
1

A2p^z2&
expS 2

z2

2^z2& D . ~5!

III. MEASURING SELF-DIFFUSION BY QUASIELASTIC
NEUTRON SCATTERING

For molecules containing hydrogen, the neutron cross
tion for incoherent scattering is much larger than for coh
ent scattering@15#. Therefore, it is possible to measure se
diffusion, i.e., the shifts of individual particles, rather tha
the evolution of the particle density, which is obtained
coherent scattering.

Throughout this paper we use the quasiclassical appr
mation for the incoherent scattering function@15#

S~Q,v!5
1

2pE dtE dr exp@ i ~Qr2vt !#G~r ,t !. ~6!

\Q describes the momentum transfer, i.e., the difference
tween outgoing momentum\kout and incoming momentum
\k in , whereas\v is the energy transfer in the interactio
between neutron beam and diffusing particles.

To obtain the total scattering function the translation
part as given in Eq.~6! has to be convoluted with the rota
tional and vibrational parts. However, since the rotatio
and vibrational parts involve much larger energy transfe
they are not influenced by the different time behaviors
one-dimensional diffusion; therefore, we neglect these p
here and concentrate on the translational part.
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IV. THE SCATTERING FUNCTION FOR DIFFUSION
IN A SINGLE CHANNEL

As a first step, we calculate the scattering function fo
single channel. For simplicity, it is assumed to be paralle
that of the scattering vectorQ. In this case, using Eqs.~5!
and ~6!, the scattering function is found to be

S1~Q,v!5
1

pE0

1`

dt cos~vt !expS 2
Q2^z2&

2 D . ~7!

Inserting the mean-square displacement for normal diffus
@Eq. ~1!#, the scattering function for normal diffusion is

S1~Q,v!5
1

p

DQ2

v21~DQ2!2 . ~8!

The scattering function for one-dimensional normal diffusi
has a Lorentzian shape as known from three-dimensional
fusion @15#. Alternately, inserting the mean-square displac
ment for single-file diffusion@Eq. ~2!#, the scattering func-
tion is

S1~Q,v!5
x

vFcosS p

2
x2D S 1

2
2C~x! D

1sinS p

2
x2D S 1

2
2S~x! D G , ~9!

where

x5
FQ2

A2pv
~10!

and C(x)[*0
xdt cos(pt2/2) and S(x)[*0

xdt sin(pt2/2) de-
note the Fresnel integrals, following the notation of R
@18#. For a numerical evaluation of the scattering functi
for single-file diffusion, it is useful to introduce the auxiliar
function @18#:

g~x!5FcosS p

2
x2D S 1

2
2C~x! D1sinS p

2
x2D S 1

2
2S~x! D G .

~11!

For g(x), there exists a rational approximation,

g~x!5
1

214.142x13.492x216.670x3 1«~x! ~12!

with

u«~x!u<231023. ~13!

Although «(x) seems to be small enough to be neglect
there are some problems when calculating the scatte
function aroundv50. Then, the variablex becomes large
and for large arguments the auxiliary function becom
small. Therefore, the relative error becomes large and
approximation according to Eq.~12! should be used only a
a first estimate.



t
ne
T
tr
e
rin

ow
n
in
on
d
th

by

io
iv
de
rv
to
Eq

g
lf

t

n
n
-

n

f

th
se

-
s-

e

n

d

are
an-

oc-

rob-

ated
ee-
elf-
nce
er-

i-
nd

tion
-

.
ent

6664 PRE 59K. HAHN, H. JOBIC, AND J. KÄRGER
V. THE SELF-CORRELATION FUNCTION
FOR ONE-DIMENSIONAL DIFFUSION

IN ISOTROPICALLY ORIENTED CHANNELS

In most experimental circumstances it is not possible
prepare a sample of crystals in such a way that all o
dimensional channels are oriented in the same direction.
common case is that one has to deal with a sample of iso
pically oriented channels. Therefore, to compare experim
tal data with the model, one has to calculate the scatte
function S3(Q,v) for diffusion in isotropically oriented
channels. This can be obtained either by performing a p
der average with the scattering function for one-dimensio
diffusion in a single channel or by calculating the scatter
function directly from the three-dimensional self-correlati
function for isotropically oriented channels. Both metho
are equivalent and the only difference is a change in
sequence of the integrations.

Although the scattering function could easily be found
performing the powder averages of Eqs.~8! and~9!, we here
prefer to calculate the three-dimensional self-correlat
functions, because the knowledge of these functions g
some additional insights into the systems under consi
ation. Furthermore, leaving the integration over the obse
tion time as the last step will also allow the possibility
examine other time dependencies than those given by
~1! and ~2!.

Let G1(z,t) be the self-correlation function of a diffusin
particle in a single one-dimensional channel. This se
correlation function describes the probability density tha
particle starting at the origin is at positionz after a time
interval t. The three-dimensional self-correlation functio
G3(r ,t) is then the combined probability density that a cha
nel goes through the pointr and that the particle has a dis
placementr 5ur u. The latter probability is simply given by
the one-dimensional self-correlation functionG1(z5r
5ur u,t). The probability density to find a given channel o
the surface of a sphere with radiusr is (2pr 2)21. The pro-
portionality with r 22 reflects the fact that the number o
channels is constant and, therefore, that the probability
find a given channel in a certain area is the inverse of
total surface of the sphere. An additional factor 1/2 ari
because a given channel found on the surface atr is also
found at 2r . Combining the two probabilities, the three
dimensional self-correlation function for isotropically di
tributed channels is found to be

G3~r ,t !5
1

2pr 2 G1~r ,t !. ~14!

In all relevant cases to be considered here the s
correlation function in a single channel is a Gaussian@Eq.
~5!#. With Eq. ~14!, the three-dimensional self-correlatio
function of the system of channels hence results to be

G3~r ,t !5
1

~2p!3/2^z2&1/2r 2
expS 2

r 2

2^z2& D . ~15!

In Eq. ~15! the mean-square displacement^z2& is that of a
single channel, i.e., that of the self-correlation function~5!.
Determining the mean-square displacement̂r 2&
o
-

he
o-
n-
g

-
al
g

s
e

n
es
r-
a-

s.

-
a

-

to
e
s

lf-

5*2`
` dr r 2G3(r ,t) for the system of isotropically oriente

channels, it is found that̂r 2&5^z2&. This is in contrast to
three-dimensional normal diffusion, where the mean-squ
displacement for three dimensions is three times the me
square displacement of a selected single dimension (^r 2&
5^x2&1^y2&1^z2&). From now on, we will writes2 for the
mean-square displacement^r 2&.

It is remarkable that the self-correlation functionG3(r ,t)
is no longer a Gaussian. Now, in the denominator there
curs a factorr 2, which leads to a discontinuity atr 50. The
probability of finding a particle aroundr 50 is much larger
than in the case of a Gaussian distribution, whereas the p
ability of finding a particle at larger is much smaller. There-
fore, in this case, the particles are much more concentr
around the origin than in the case of conventional thr
dimensional diffusion, which is described by a Gaussian s
correlation function. This concentration is the conseque
of the higher probability to find a specific channel on a c
tain area of a surface with small radiusr compared with
surfaces with large radius.

VI. THE SCATTERING FUNCTION
FOR ONE-DIMENSIONAL DIFFUSION

IN ISOTROPICALLY ORIENTED CHANNELS

Once the self-correlation function for isotropically or
ented channels is known, the scattering function is fou
from Eq. ~6! as

S3~Q,v!5
1

2pE dtE dr exp~2 ivt !exp~ iQr !G3~r ,t !

~16!

5
1

pE0

`

dtE
0

`

drE
0

2p

dwE
0

p

dur 2 sin~u!cos~vt !

3cos@Qr cos~u!#
1

2pr 2 G1~r ,t !, ~17!

where Eq.~14! was used to substituteG3(r ,t) and the one-
dimensional self-correlation functionG1(r ,t) was assumed
to be an even function in bothr and t. Performing the inte-
gration overw and substituting cos(u)[s, the scattering func-
tion becomes

S3~Q,v!5
2

pE0

`

dtE
0

`

drE
0

1

dscos~vt !cos~Qrs!G1~r ,t !.

~18!

Assuming a Gaussian shape for the self-correlation func
G1(r ,t), the integrals overr ands can be calculated, result
ing in the scattering function

S3~Q,v!5
1

A2p
E

0

`

dt
1

Qs
cos~vt !erfS Qs

A2
D , ~19!

where erf (x)5(2/Ap)*0
xdte2t2 denotes the error function

For normal diffusion, where the mean-square displacem
behaves ass25^r 2&52Dt, the solution is known to be@16#
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S3~Q,v!5
1

4pA2 yv
F lnS 11y22yA2

11y21yA2
D

12 arctan~11A2y!22 arctan~12A2y!G
~20!

with

y5
ADQ

Av
. ~21!

For v50 the scattering function in Eq.~20! diverges, re-
gardless of the momentum transferQ. This behavior atv
50 ~and thus for large time scales! is different from normal
three-dimensional diffusion, where the scattering function
verges only if momentum and energy transfer vanish sim
taneously. The different behavior of these two cases is
immediate consequence of the corresponding self-correla
functions. In the case of normal three-dimensional diffusi
the probability that a particle has moved over a finite non
nishing distance in a long time interval is large and thus
energy transfer occurs. Otherwise, in the case of diffusio
isotropically oriented channels, the probability that a parti
is nearr 50 is large also for long time intervals. But, if n
particle shift occurs, there is no energy transfer and due
the discontinuity in the self-correlation functionG3(r ,t) at
r 50 @see Eq.~15!#, a discontinuity in the scattering functio
at v50 arises@17#.

By settingv50 in Eq. ~19!, it may be shown that this
behavior not only results for normal one-dimensional dif
sion, but for all processes where for,t→`, the mean-square
displacement behaves ass25^r 2&}ta with a,2. Therefore,
the discontinuity arises for any realistic time behavior of t
diffusional process in isotropically oriented channels, es
cially for normal (a51) and single-file (a50.5) diffusion.

VII. THE INFLUENCE OF THE EXPERIMENTAL
RESOLUTION ON THE SCATTERING FUNCTION

The discontinuity in Eq.~19! does not directly appear in
the experimental data because the incoming neutron bea
never strictly monochromatic with a fixed incoming ener
v in . In reality, there is a more or less sharp energy distri
tion aroundv in , which is described by the energy resolutio
function R(v̂ in ,v in ,d). This function gives the probability
that a neutron of the incoming beam has the energy\v̂ in ,
when the mean energy is\v in . The parameterd describes
the width of the resolution function.

The scattering function given by Eq.~19! has to be con-
voluted, therefore, with the energy resolution functionR(v̂
2v,d),

S3,R~Q,v,d!5
1

A2p
E

2`

`

dv̂E
0

`

dtR~v̂2v,d!

3
1

Qs
cos~v̂t !erfS Qs

A2
D . ~22!
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Introducing the auxiliary function

H~ t,v,d!5E
2`

`

dv̂R~v̂2v,d!cos~v̂t !, ~23!

which is proportional to the cosine Fourier transform of t
energy resolution function, the scattering function becom

S3,R~Q,v,d!5
1

A2p
E

0

`

dtH~ t,v,d!
1

Qs
erfS Qs

A2
D .

~24!

In most cases the energy distribution function or resolution
a function with a narrow peak atv̂5v. In this paper we
restrict ourselves to the three most prominent represe
tions, viz., a triangular resolution:

R~v̂2v,d!55
1

d2 ~v̂2v1d!, v2d<v̂<v

1

d2 ~2v̂1v1d!, v<v̂<v1d

0, else,
~25!

Gaussian resolution:

R~v̂2v,d!5
1

A2pd
expS 2

~v̂2v!2

2d2 D , ~26!

and Lorentzian resolution:

R~v̂2v,d!5
1

p

d

d21~v̂2v!2
. ~27!

The triangular resolution applies to the neutron spectrome
which was used in the experiment described in Ref.@9#
~IN5!, where a narrow energy distribution is selected from
white beam using multichoppers.

The corresponding auxiliary functions are

H~ t,v,d!5
4

d2t2 cos~vt !sin2S dt

2 D ~28!

for triangular resolution,

H~ t,v,d!5 cos~vt !expS 2
t2d2

2 D ~29!

for Gaussian resolution, and

H~ t,v,d!5 cos~vt !exp~ td! ~30!

for Lorentzian resolution.
Inserting the auxiliary function from Eq.~28! into Eq.

~24! we finally have for the scattering function with triangu
lar resolution, e.g.,
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S3,R~Q,v,d!52
A2

Ap
E

0

`

dt
1

Qs

1

d2t2

3cos~vt !sin2S dt

2
D erfS Qs

A2
D . ~31!

This equation holds true for any time behavior of the me
square displacements2.

In the following, we will use the quite general notation

s252dt2m ~32!

including the cases of normal diffusion~with m51/2 andd
5D) and single-file diffusion~with m51/4 andd5F).

Although no analytical solution of the integral in Eq.~24!
with the time behavior of Eq.~32! is known, an estimate fo
large values ofQAd can be given. In this case, the argume
of the error function erf(QAdtm) is large and the error func
tion approaches 1 already for short timest. Therefore, the
error function can be omitted for largeQAd in Eq. ~31!. For
the resulting integrals analytical solutions are known:

S3,R~Q→`,v,d!

5
1

8

1

2m

1

QAdd2

GS 2
11m

2 D
GS 21m

2 D
3@2v11m2~ uv1du!11m2~ uv2du!11m#

~33!

for triangular resolution,

S3,R~Q→`,v,d!5
1

4ApQAd
S d2

2 D 2~12m!/2

3GS 12m

2 D 1F1S 12m

2
;
1

2
;2

v2

2d2D
~34!

for Gaussian resolution, and

S3,R~Q→`,v,d!5
1

2ApQAd
G~12m!~v21d2!2~12m!/2

3cosF ~12m!arctanS v

d D G ~35!

for Lorentzian resolution. The function1F1(a;b;x) denotes
the confluent hypergeometric function@18# @alternative nota-
tions for this function areF(a;b;x) or M (a,b,x)].

Once the scattering function is known, the full width
half maximum~FWHM! can be found from the relation
-

t

S3,RS Q,
Dv

2
,d D5

1

2
S3,R~Q,0,d!, ~36!

whereDv denotes the FWHM. Now we considerDv as a
function ofm. In order to have a generalized width, which
independent ofd, we introduce the new variable

DV5
Dv~m!

Dv0
, ~37!

whereDv0 denotes the width atm50.
Generally, it can be shown by analytical means that

scattering function~Eq. 24! is identical to the resolution
functionR(v,d) whenQAd50. This condition is fulfilled if
either m50 or Q50 and, therefore, in both cases we ha
S3,R(Q,v,d)5R(v,0,d). This can be rationalized by the fac
that atm50, the particles do not move and, therefore, the
is only pure elastic scattering. Thus, the outgoing ene
distribution is the same as the incoming distribution. T
same is true for the energy distribution atQ50. In this case
there is neither a momentum nor an energy transfer and a
incoming and outgoing energy distributions are the sam
Then, in both cases (m50 andQ50), the widthDv0 of the
scattering function is the same as the width of the resolu
function. In the cases under consideration, this quantity,
pressed as a function ofd, is

Dv05d ~38!

for triangular resolution,

Dv052A2 ln ~2!d ~39!

for Gaussian resolution, and

Dv052d ~40!

for Lorentzian resolution.

FIG. 1. The widthDV at Q→` as a function of the exponentm
for triangular, Gaussian, and Lorentzian resolution.
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The widthDV at Q→` as a function of the exponentm
is given in Fig. 1. While form,0.6 the width grows slowly
from d to 2d, for m.0.6 there is a very steep ascent leadi
to y→` at m51. It should be noted here that the FWHM fo
Q→` is finite in all cases withm,1. This is in striking
contrast to three-dimensional normal diffusion where
width for largeQ is proportional toQ and thus goes to in
finity.

For the cases of normal (m50.5) and single-file (m
50.25) diffusion, the widthsDV for the different resolution
functions are given in Table I. Whereas the values for Gau
ian and triangular resolution are very similar, the width f
Lorentzian resolution is much larger.

For m→1, the integral in Eq.~31! is dominated by the
behavior of the integrand att→0 and, thus, the approxima
tion erf→1 is not good in this region. Therefore, the FWH
as predicted from Eqs.~33!, ~34!, and~35! in Fig. 1 will be
reached only at very largeQAd. For diffusion processes
where the exponentm<0.5, the approximation should b
good enough and the FWHM reaches its maximum va
already at intermediate values ofQAd.

The behavior of the FWHM for triangular resolution as
function of the momentum transferQ for normal and single-
file diffusion in isotropically oriented channels as resulti
from numerical evaluation of Eq.~31! is given in Figs. 2 and
3, respectively. For the widthd of the resolution function, a
value of 0.018 meV is used. This is the same value as use
a recent experiment on IN5@9#. In the experimentally acces
sible range ofQ50.1–2.0 Å21 diffusivities D larger than
131026 m2 s21 cannot be distinguished by comparing t

TABLE I. The relative full width at half maximumDV at Q
→` for single-file and normal diffusion in isotropically oriente
channels.

Single-file Normal
m50.25 m50.5

Triangular 1.2687 1.7108
Gaussian 1.2145 1.6968
Lorentzian 1.4124 2.5425

FIG. 2. The widthDv for normal diffusion with triangular reso
lution as a function of the momentum transferQ for different dif-
fusivities.
e

s-
r

e

in

FWHM, because for diffusivities larger than this limit, th
FWHM has reached its maximum value already atQ
50.2 Å21 ~see Fig. 2!. In the single-file case the limit is at
mobility of F51310212 m2 s21/2 ~see Fig. 3!. The behav-
ior of the FWHM in the cases of Gaussian and Lorentz
resolution is similar and the limiting diffusivities or mobili
ties are of the same order as in the case of triangular res
tion.

Whereas the determination of diffusion coefficients
mobilities using the FWHM is not always possible, the
quantities can be found using the scattering functions.
Figs. 4 and 5 the scattering functions with triangular reso
tion for three-dimensional normal diffusion and for norm
and single-file diffusion in isotropically oriented channels
a momentum transfer ofQ50.35 Å21 are compared. The
relevant parameters~diffusivities and mobilities, respec
tively! are chosen in such a way that the other amplitudes
best fits to the scattering amplitude of normal diffusion
channels. For very small parameters~Fig. 4! the scattering
functions are almost identical and it is impossible to dist
guish between the three different types of diffusional beh
ior. The shape is essentially governed by the instrume

FIG. 3. The widthDv for single-file diffusion with triangular
resolution as a function of the momentum transferQ for different
mobilities.

FIG. 4. The scattering functionS3,R(Q,v,d) for three-
dimensional normal diffusion and for normal and single-file diff
sion in isotropically oriented channels atQ50.35 Å21 ~triangular
resolution!. Small diffusion coefficients.
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resolution. Only the scattering function for single-file diffu
sion differs slightly from the other ones aroundv50.02
meV. Experimentally, this means that one would have
resort to another spectrometer having a higher resolution.
larger parameters~Fig. 5! the scattering functions are we
separated and both the determination of the principal di
sional behavior and the diffusivity or mobility can easily b
done.

As an example, we compare the theoretical scatte
functions with experimental data, found for methane in
zeolite ZSM-48~for details see Ref.@9#!. The data are given
for a momentum transfer ofQ50.35 Å21, where the influ-
ence of rotation is small and can be neglected. In Fig. 6
data together with the best fits to the experimental data
normal and single-file diffusion in isotropically oriente
channels are given. The fits were carried out minimizing
function

FIG. 5. The scattering functionS3,R(Q,v,d) for three-
dimensional normal diffusion and for normal and single-file diff
sion in isotropically oriented channels atQ50.35 Å21 ~triangular
resolution!. Large diffusion coefficients.

FIG. 6. Comparison of experimental data from the diffusion
methane in ZSM-48 with the scattering functions for normal a
single-file diffusion in isotropically oriented channels atQ
50.35 Å21.
o
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Rwp5S (
i

wi@yi~obs!2yi~calc!#2

(
i

wiyi
2~obs!

D 1/2

, ~41!

whereyi(obs) andyi(calc) denote the experimental and th
oretical values of the scattering functions, respectively, a
the weight iswi51/yi(obs). Whereas the scattering functio
for normal diffusion withD52.531029 m2 s21 reproduces
the data very well (Rwp512.4), the function for single-file
diffusion does not fit to the data (Rwp518.9). It is not pos-
sible to reproduce the experimental data with the single-
diffusion function both in the central peak and in the wing

f
d

FIG. 7. The space and time ranges~left and lower axis! together
with the corresponding ranges of momentum and energy tran
~right and upper axis! relevant for QENS. The vertical straight lin
divides the plane into the range occupied by the central peak of
scattering function for the case without ballistic phase~right-hand
side! and into the range not occupied by the central peak~left-hand
side!. The mean shifts for normal diffusion with initial ballistic
phase is given for two diffusivities (D51026 and 1027 m2/s).

FIG. 8. The widthDv for normal diffusion with triangular reso-
lution as a function of the momentum transferQ for different dif-
fusivities. A ballistic phase with a velocity ofv5280 m/s is as-
sumed.
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VIII. THE INFLUENCE OF THE BALLISTIC PHASE
ON THE SCATTERING FUNCTION

Quasielastic neutron scattering measures the behavior
system on a time scale of 10212 to 1028 s. These times are
very short compared with the range accessible by PFG N
and it is not obvious whether the long-time behavior is
ready established in the QENS measurements. At short ti
the behavior of the particles is ballistic, i.e.,^z2&5v2t2, and
there exists a transition timetc where the system behavio
switches from the ballistic phase to normal or single-file d
fusion. We define the transition timetc as the crossover time
of the two asymptotic behaviors, i.e., the time when
mean square displacements of the two processes are
same,

s25v2tc
252dtc

2m . ~42!

FIG. 9. The space and time ranges~left and lower axis! together
with the corresponding ranges of momentum and energy tran
~right and upper axis! relevant for QENS. The vertical straight lin
divides the plane into the range occupied by the central peak o
scattering function for the case without ballistic phase~right-hand
side! and into the range not occupied by the central peak~left-hand
side!. The mean shifts for single-file diffusion with initial ballistic
phase is given for two mobilities (F510211 and 10212 m2/s1/2).

FIG. 10. The widthDv for single-file diffusion with triangular
resolution as a function of the momentum transferQ for different
mobilities. A ballistic phase with a velocity ofv5280 m/s is as-
sumed.
f a

R
-
es

-

e
the

We thus obtain

tc5S 2d

v2 D 1/~222m!

. ~43!

The velocityv during the ballistic phase coincides wit
the thermal velocity of the particles

v5S kT

m D 1/2

, ~44!

wherem is the mass of a particle andT is the system tem-
perature. The time dependence of the mean-square disp
ment over the complete time range can be approximated
@19#

s25
v2t2

11
v2

2d
t222m

. ~45!

er

he

FIG. 11. The scattering functionS3,R(Q,v,d) for three-
dimensional normal diffusion and for normal and single-file diff
sion with and without ballistic phase in isotropically oriented cha
nels at Q50.35 Å21 ~triangular resolution!. Diffusivity and
mobility chosen such that ranges influenced by ballistic phase
occupied by central peak do not overlap.

FIG. 12. The scattering functionS3,R(Q,v,d) for three-
dimensional normal diffusion and for normal and single-file diff
sion with and without ballistic phase in isotropically oriented cha
nels at Q50.35 Å21 ~triangular resolution!. Diffusivity and
mobility chosen such that ranges influenced by ballistic phase
occupied by central peak overlap.
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Inserting this approximation into Eq.~24!, the scattering
function and width for the case with ballistic behavior can
found. In the numerical calculations, a velocityv5280 m/s
was used. This value corresponds to methane molecules
temperature ofT5150 K.

The consequences of the existence of a ballistic ph
become obvious considering the transition times and the
responding particles shifts. Figure 7 shows the space
time ranges~left and lower axes! together with the corre-
sponding ranges of momentum and energy transfer~right and
upper axis!, which are relevant for quasielastic neutron sc
tering. The vertical straight line divides the plane into t
range occupied by the central peak of the scattering func
for the case without ballistic phase~right-hand side! and into
the range not occupied by the central peak~left-hand side!.
The half width at the base of the central peak is assume
be 2d and the small dependence onQ is neglected. The mea
shift s for normal diffusion with initial ballistic phase to
gether with the corresponding crossover timestc is given for
two diffusivities (D51026 and 1027 m2/s). For the smaller
diffusivity the crossover time is far away from the ran
occupied by the central peak and, therefore, the central p
should not be modified by the influence of the ballistic pha
With increasing diffusivity the range influenced by the b
listic phase grows towards the upper right corner. AtD
'1026 m2/s the range influenced by the ballistic phase
gins to overlap with the region occupied by the central pe
of the scattering function. A change in the pattern of t
scattering function and of the width should be expected
the case of such an overlap, i.e., in the present case for
fusivities larger thanD'1026 m2/s.

In Fig. 8, the FWHM for normal diffusion and triangula
resolution with an initial ballistic phase in isotropically or
ented channels is given. As expected from the interpreta
of Fig. 7, for diffusivitiesD,1027 m2/s the behavior of the
FWHM is very similar to the case without an initial ballist
phase ~see Fig. 2!, whereas for a diffusivity of D
51026 m2/s the behavior changes. In fact, the change in
behavior is dramatic and the FWHM increases rapidly
stead of approaching a constant value for largeQ. In all
experimental cases studied so far,D is of the order ofD
51029 m2/s, and, therefore, the ballistic phase can be
glected.

In the case of single-file diffusion the situation is simila
In Fig. 9 the range influenced by the ballistic phase and
range occupied by the central peak of the scattering func
are given for single-file diffusion. For single-file diffusio
the overlap begins at a mobility ofF'2310212 m2/s1/2.
Again, when the two regions overlap, a significant change
the behavior of the FWHM is to be expected.

The FWHM for different mobilitiesF is given in Fig. 10.
For mobilities smaller than 2310212 m2 s21/2 the influence
of the ballistic phase is small~see Fig. 3! and the FWHM
approaches a constant value for largeQ. Otherwise, for mo-
bilities larger than the above value, the widths are rapi
increasing withQ.

The strong increase of the FWHM can be understood
interpreting Fig. 1. In the ballistic phase the exponent of
time behavior@Eq. ~32!# is m51 and for this value the
FWHM increases to infinity for largeQ ~see Fig. 1!. There-
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fore, a stronger increase of the FWHM should be expec
compared with the case without ballistic phase.

In PFG-NMR measurements, where the observed t
scale is 1–100 ms and, therefore, the ballistic phase ca
be seen, mobilities of an order ofF510211 m2/s1/2 were
found @7#. The mobility factor obtained from QENS fo
methane,F52310212 m2/s1/2 corresponds to the limit
where this effect has to be considered. Thus, measuring
systems by quasielastic neutron scattering, the analysis o
ballistic phase is necessary for the interpretation of the
perimental results.

In Fig. 11 the scattering functions forQ50.35 Å21 with
and without ballistic phase are compared for a medium
fusivity and mobility. As to be expected from the interpret
tion of Fig. 7, the change of the scattering function is ve
small for normal diffusion with a diffusion coefficient ofD
51028 m2 s21. In the case of single-file diffusion with a
mobility of F54.1310213 m2 s21/2, the scattering function
with ballistic phase is larger than without. The main effect
in the wings outside of the central peak.

The scattering functions for a diffusivity or mobility
where a large change in the behavior is expected, are g
in Fig. 12. Both for single-file and normal diffusion, the sca
tering functions are much larger than in the case with
ballistic phase. The increase of the scattering functions o
side the central peak is very strong leading to large widths
already seen in Figs. 8 and 10.

Reanalyzing the experimental data shown in Fig. 6
have found that the diffusivity is small enough to justify th
exclusion of a ballistic phase and hence of the possibility
a misinterpretation of the data by neglecting this effect. T
result is in agreement with the above statement that the
fluence of the ballistic phase becomes negligible for dif
sivities smaller than 1026 m2 s21.

IX. SUMMARY

The phenomenon of single-file diffusion may be inves
gated by means of quasielastic neutron scattering. For d
sivities and mobilities large enough to lead to a significa
broadening, diffusion in isotropically oriented one
dimensional channels can be well distinguished from thr
dimensional normal diffusion. Furthermore, normal a
single-file diffusion in such channels can also be dist
guished and the determination of the diffusivity or mobili
is possible. Due to the discontinuity of the self-correlati
function G3(r ,t) at r 50, the scattering functionS3(Q,v)
has a discontinuity atv50 and the scattering function
S3,R(Q,v,d) convoluted with the resolution function is muc
narrower than in the case of three-dimensional normal di
sion. Therefore, the resolution of the spectrometer used m
be adapted accordingly.

In contrast to the case of three-dimensional normal dif
sion where the FWHM increases linearly with the mome
tum transferQ, the FWHM for diffusion in one-dimensiona
channels approaches a constant value at largeQ, when the
mean-square displacement is assumed to follow a power
~Eq. 32! over the full time range. For large diffusivities o
mobilities the FWHM reaches its maximum value already
small momentum transfer (Q,0.2 Å21). On the other
hand, for large diffusivities or mobilities the ballistic phas



be
s
in
n

al
lly

f
th

ially

ich
Eu-
3-

PRE 59 6671INVESTIGATING ONE-DIMENSIONAL DIFFUSION BY . . .
describing the free motion of the particles at short times
comes essential. The influence of the ballistic phase lead
a significant increase of both the maximum of the scatter
function and the FWHM. The behavior of the FWHM ca
change completely: instead of approaching a constant v
at largeQ, the FWHM increases over the full experimenta
accessible range of the momentum transfer. Therefore,
the interpretation of experimental results, the influence of
, J
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to
g

ue

or
e

ballistic phase should be taken into consideration, espec
if a large diffusivity or mobility is expected.
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